Search results for "Plant-Environment Interactions"

showing 10 items of 10 documents

Interaction between Medicago truncatula and Pseudomonas fluorescens: evaluation of costs and benefits across an elevated atmospheric CO2.

2012

10 pages; International audience; Soil microorganisms play a key role in both plants nutrition and health. Their relation with plant varies from mutualism to parasitism, according to the balance of costs and benefits for the two partners of the interaction. These interactions involved the liberation of plant organic compounds via rhizodeposition. Modification of atmospheric CO2 concentration may affect rhizodeposition and as a consequence trophic interactions that bind plants and microorganisms. Positive effect of elevated CO2 on plants are rather well known but consequences for micoorganisms and their interactions with plants are still poorly understood. A gnotobiotic system has been devel…

0106 biological scienceslcsh:MedicineplantPlant Science01 natural sciencesPlant RootsPlant reproductionnitrogenPlant Microbiologyterrestrial ecosystem[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/Symbiosislcsh:ScienceSoil Microbiology2. Zero hungerMutualism (biology)Abiotic componentPlant Growth and Development0303 health sciencesRhizospheredynamicMultidisciplinaryresponsebiologyEcologyfood and beveragesMedicago truncatulacarbon-dioxide;terrestrial ecosystem;development;dynamic;nitrogen;plant;soil;rhizosphere;response;Pseudomonas fluorescensSeedsSoil microbiologyEcosystem FunctioningResearch Article[ SDV.SA.SDS ] Life Sciences [q-bio]/Agricultural sciences/Soil studyPseudomonas fluorescensFlowers[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil studycarbon-dioxidePseudomonas fluorescensMicrobiologyEcosystemsMicrobial Ecologysoil03 medical and health sciencesSymbiosisPlant-Environment InteractionsBotanyMedicago truncatulaSymbiosisBiologydevelopment030304 developmental biology[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyAnalysis of VarianceAtmospherePlant Ecologylcsh:RfungiComputational Biology15. Life on landCarbon Dioxidebiology.organism_classificationPlant LeavesAgronomylcsh:Q[SDE.BE]Environmental Sciences/Biodiversity and EcologyrhizosphereEcosystem Modeling010606 plant biology & botany[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Identification and Characterization of Stress-Responsive TAS3-Derived TasiRNAs in Melon

2019

Small interfering RNAs (siRNA) are key regulators of gene expression that play essential roles in diverse biological processes. Trans-acting siRNAs (tasiRNAs) are a class of plant-endogenous siRNAs that lead the cleavage of non-identical transcripts. TasiRNAs are usually involved in fine-tuning development. However, increasing evidence supports that tasiRNAs may be involved in stress response. Melon is a crop of great economic importance extensively cultivated in semiarid regions frequently exposed to changing environmental conditions that limit its productivity. However, knowledge of the precise role of siRNAs in general, and of tasiRNAs in particular, in regulating the response to adverse…

Small interfering RNAPhysiologyChromosome localizationMelonNcRNAsCold treatmentCell BiologyPlant ScienceGeneral MedicineComputational biologyBiologyPlant-environment interactionsFight-or-flight responseRegulation of the stress response in cropsRNA silencingCucurbitaceaeGene Expression Regulation PlantGene expressionRNA Small InterferingRNA silencingSmall RNAs in melonGene
researchProduct

Ocean Acidification and the Loss of Phenolic Substances in Marine Plants

2012

Rising atmospheric CO(2) often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO(2) availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO(2) enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO(2) …

0106 biological sciencesCymodocea nodosaved/biology.organism_classification_rank.speciesCarbonatesSecondary MetabolismMarine and Aquatic Scienceslcsh:MedicinePlant Science01 natural scienceschemistry.chemical_compoundGlobal Change Ecologylcsh:SciencePhysiological EcologyMultidisciplinaryAlismatalesbiologyEcologyEcologyPlant BiochemistryMarine EcologyOcean acidificationPotamogetonaceaeHydrogen-Ion ConcentrationSeagrassProductivity (ecology)ItalyCarbon dioxideCoastal EcologyResearch ArticleOceans and SeasMarine Biology010603 evolutionary biologyStatistics NonparametricHydrothermal VentsPhenolsPlant-Environment InteractionsTerrestrial plantSeawater14. Life underwaterocean acidification climate change mediterranean sea seagrassBiologyAnalysis of VarianceChemical EcologyMarylandved/biology010604 marine biology & hydrobiologyPlant Ecologyfungilcsh:R15. Life on landCarbon Dioxidebiology.organism_classificationSalinitychemistry13. Climate actionEarth Scienceslcsh:QRuppia maritima
researchProduct

Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat

2017

Arbuscular mycorrhizal (AM) symbiosis is generally considered to be effective in ameliorating the plant tolerance to salt stress. Unfortunately, the comprehension of the mechanisms implicated in salinity stress alleviation by AM symbiosis is far from being complete. Thus, an experiment was performed by growing durum wheat (Triticum durum Desf.) plants under salt-stress conditions to evaluate the influence of AM symbiosis on both the plant growth and the regulation of a number of genes related to salt stress and nutrient uptake. Durum wheat plants were grown outdoors in pots in absence or in presence of salt stress and with or without AM fungi inoculation. The inoculum consisted of a mixture…

0106 biological sciences0301 basic medicineRhizophagus irregularisSalinityLeavesGene Expressionlcsh:MedicinePlant SciencePlant RootsPolymerase Chain ReactionPhysical Chemistry01 natural sciencesNutrientMycorrhizaePlant Resistance to Abiotic Stresslcsh:ScienceTriticumBiomass (ecology)MultidisciplinaryEcologyPlant Anatomyfood and beveragesSalt TolerancePlantsSettore AGR/02 - Agronomia E Coltivazioni ErbaceeChemistryPlant PhysiologyPhysical SciencesWheatSymbiosiResearch ArticleBiology03 medical and health sciencesSymbiosisSettore AGR/07 - Genetica AgrariaPlant-Environment InteractionsBotanyGeneticsPlant DefensesGene RegulationGrassesSymbiosisBiochemistry Genetics and Molecular Biology (all)InoculationGene Expression ProfilingPlant EcologyEcology and Environmental Scienceslcsh:RfungiOrganismsFungiBiology and Life SciencesPlant RootPlant Pathologybiology.organism_classificationSporeSalinitySpecies Interactions030104 developmental biologyAgricultural and Biological Sciences (all)Chemical PropertiesArbuscular mycorrhizal symbiosislcsh:QSalt-Tolerance010606 plant biology & botanyPLOS ONE
researchProduct

Tropical Andean forests are highly susceptible to nutrient inputs--rapid effects of experimental N and P addition to an Ecuadorian montane forest.

2012

Tropical regions are facing increasing atmospheric inputs of nutrients, which will have unknown consequences for the structure and functioning of these systems. Here, we show that Neotropical montane rainforests respond rapidly to moderate additions of N (50 kg ha -1 yr -1) and P (10 kg ha -1 yr -1). Monitoring of nutrient fluxes demonstrated that the majority of added nutrients remained in the system, in either soil or vegetation. N and P additions led to not only an increase in foliar N and P concentrations, but also altered soil microbial biomass, standing fine root biomass, stem growth, and litterfall. The different effects suggest that trees are primarily limited by P, whereas some pro…

0106 biological sciences010504 meteorology & atmospheric scienceslcsh:MedicinePlant Science01 natural sciencesPlant RootsTreesSoilNutrientGlobal Change EcologyBiomasslcsh:ScienceConservation ScienceBiomass (ecology)MultidisciplinaryEcologyEcologyPhosphorusVegetationBiodiversityPlant litterBiogeochemistrySoil EcologyPlantsTropical; Andean; Forests; Nutrient Input; N; P; Ecuadorian Montane ForestTerrestrial EnvironmentsEcuadorResearch ArticleNitrogenRainforestBiology010603 evolutionary biologyEcosystemsSystems EcologynutrientsPlant-Environment InteractionsForest ecologyEcosystemmontaneforestTerrestrial EcologyFertilizersBiologyEcosystem0105 earth and related environmental sciencesTropical ClimateChemical EcologyPlant Ecologylcsh:RTropics15. Life on landPlant Leaveslcsh:QEcological EnvironmentsPloS one
researchProduct

A putative antiviral role of plant cytidine deaminases

2014

[Background]: A mechanism of innate antiviral immunity operating against viruses infecting mammalian cells has been described during the last decade. Host cytidine deaminases (e.g., APOBEC3 proteins) edit viral genomes, giving rise to hypermutated nonfunctional viruses; consequently, viral fitness is reduced through lethal mutagenesis. By contrast, sub-lethal hypermutagenesis may contribute to virus evolvability by increasing population diversity. To prevent genome editing, some viruses have evolved proteins that mediate APOBEC3 degradation. The model plant Arabidopsis thaliana genome encodes nine cytidine deaminases ( AtCDAs), raising the question of whether deamination is an antiviral mec…

0301 basic medicinevirusesPopulation030106 microbiologyDeaminationAntiviral innate immunityGenomeGeneral Biochemistry Genetics and Molecular BiologyVirusError catastrophePararetrovirusGene product03 medical and health scienceschemistry.chemical_compoundPlant-virus interactionGenome editingPlant-Environment InteractionsVirologyHypermutagenesisArabidopsis thalianaGeneral Pharmacology Toxicology and PharmaceuticseducationGeneGeneticseducation.field_of_studyCauliflower mosaic virusGeneral Immunology and MicrobiologybiologyHost (biology)fungifood and beveragesCytidineGeneral MedicineArticlesbiology.organism_classificationVirologyVirus evolution030104 developmental biologychemistryMutational spectrumPlant Genetics & Gene ExpressionViral evolutionCauliflower mosaic virusResearch Article
researchProduct

Fungal-Mediated Multitrophic Interactions : Do Grass Endophytes in Diet Protect Voles from Predators?

2009

Plant-associated micro-organisms such as mycotoxin-producing endophytes commonly have direct negative effects on herbivores. These effects may be carried over to natural enemies of the herbivores, but this has been rarely explored. We examined how feeding on Neotyphodium endophyte infected (E+) and endophyte free (E−) meadow ryegrass (Scherodonus pratensis) affects body mass, population size and mobility of sibling voles (Microtus levis), and whether the diet mediates the vulnerability of voles to least weasel (Mustela nivalis nivalis) predation. Because least weasels are known to be olfactory hunters, we also examined whether they are able to distinguish olfactory cues of voles fed on E+ a…

Male0106 biological scienceslcsh:Medicine01 natural sciencesEndophytePopulation densityPredationlcsh:SciencePOPULATIONRISKeducation.field_of_studyMultidisciplinarybiologyArvicolinaeEcologyEcology/Plant-Environment Interactionsfood and beveragesWEASELSNeotyphodiumSmellCOMMUNITYArvicolinaeFemaleResearch ArticlePlant Biology/Plant-Biotic InteractionsPopulationeducationPoaceaeECOLOGY010603 evolutionary biologyFood PreferencesSex FactorsAnimalsEcology/Behavioral EcologyPoaceaePLANTeducationEcosystemHerbivoreModels StatisticalBody Weightlcsh:RCONSUMPTIONFeeding Behavior15. Life on landPERFORMANCEbiology.organism_classificationPredatory Behaviorlcsh:Q010606 plant biology & botany
researchProduct

Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress.

2014

Several studies, performed mainly in pots, have shown that arbuscular mycorrhizal symbiosis can mitigate the negative effects of water stress on plant growth. No information is available about the effects of arbuscular mycorrhizal symbiosis on berseem clover growth and nitrogen (N) fixation under conditions of water shortage. A field experiment was conducted in a hilly area of inner Sicily, Italy, to determine whether symbiosis with AM fungi can mitigate the detrimental effects of drought stress (which in the Mediterranean often occurs during the late period of the growing season) on forage yield and symbiotic N2 fixation of berseem clover. Soil was either left under water stress (i.e., rai…

RainBiomasslcsh:MedicinePlant ScienceSoil ChemistryTrifolium alexandrinumMycorrhizaeBiomasslcsh:ScienceSicilyPlant Growth and DevelopmentMultidisciplinaryEcologyTemperaturefood and beveragesAgriculturePlantsDroughtsSettore AGR/02 - Agronomia E Coltivazioni ErbaceeChemistryAgricultural soil scienceNitrogen fixationN fixationAM fungiResearch ArticleField experimentWater stressGrowing seasonForageCropsMycologyBiologyMicrobiologyCropAgricultural ProductionSymbiosisStress PhysiologicalNitrogen FixationPlant-Environment InteractionsEnvironmental ChemistryBiologyAM fungi; Trifolium alexandrinum; N fixation; Water stressAnalysis of VarianceNitrogen IsotopesPlant Ecologyfungilcsh:RFungiSustainable AgricultureAgronomyTrifoliumlcsh:QAgronomic EcologyAgroecologyPLoS ONE
researchProduct

Nectar sugar production across floral phases in the Gynodioecious Protandrous Plant Geranium sylvaticum [corrected].

2013

Many zoophilous plants attract their pollinators by offering nectar as a reward. In gynodioecious plants (i.e. populations are composed of female and hermaphrodite individuals) nectar production has been repeatedly reported to be larger in hermaphrodite compared to female flowers even though nectar production across the different floral phases in dichogamous plants (i.e. plants with time separation of pollen dispersal and stigma receptivity) has rarely been examined. In this study, sugar production in nectar standing crop and secretion rate were investigated in Geranium sylvaticum, a gynodioecious plant species with protandry (i.e. with hermaphrodite flowers releasing their pollen before th…

PollinationPlant NectarGeraniumCarbohydrateslcsh:MedicineFlowersPlant ScienceBiologymedicine.disease_causeHermaphroditeRewardPollinatorPollenPlant-Environment InteractionsBotanymedicineNectarAnimalsHermaphroditic OrganismsPollinationlcsh:ScienceC200 BotanyBiologyFlowering PlantsEvolutionary BiologyMultidisciplinaryEcologyPopulation BiologyPlant Ecologylcsh:RPlant NectarPlantsbiology.organism_classificationEvolutionary EcologyGeranium sylvaticumSeedsNectar guideta1181Pollenlcsh:QPopulation EcologyC180 EcologyResearch ArticlePLoS ONE
researchProduct

Bryophyte Species Richness on Retention Aspens Recovers in Time but Community Structure Does Not

2014

Green-tree retention is a forest management method in which some living trees are left on a logged area. The aim is to offer ‘lifeboats’ to support species immediately after logging and to provide microhabitats during and after forest re-establishment. Several studies have shown immediate decline in bryophyte diversity after retention logging and thus questioned the effectiveness of this method, but longer term studies are lacking. Here we studied the epiphytic bryophytes on European aspen (Populus tremula L.) retention trees along a 30-year chronosequence. We compared the bryophyte flora of 102 ‘retention aspens’ on 14 differently aged retention sites with 102 ‘conservation aspens’ on 14 d…

0106 biological sciencesEcological Political Economy010504 meteorology & atmospheric sciencesDIVERSITYBiodiversitylcsh:MedicinePlant ScienceBryology01 natural scienceslehtisammaletMICROCLIMATIC GRADIENTSTreesbryophyte diversitysammaletAbundance (ecology)TREE RETENTIONlcsh:Science1183 Plant biology microbiology virologyConservation Scienceforest reestablishmentMultidisciplinaryEcologyEcologyLoggingmetsänkäsittelyForestryAgricultureBiodiversityFINLANDta4112metsätHabitatCommunity EcologyGROWTHResearch ArticleConservation of Natural ResourcesEPIPHYTIC BRYOPHYTESChronosequenceeducationCONSERVATIONForest managementBryophytaBiology010603 evolutionary biologyBOREAL FORESTelvytysPlant-Environment InteractionsEDGES0105 earth and related environmental sciencesPlant Ecologylcsh:REcology and Environmental SciencesBiology and Life SciencesBayes Theorem15. Life on landhakkuualueetREPRODUCTIONta1181lcsh:QBryophyteSpecies richnessmetsänhoitogreen tree retentionAgroecologyPLOS ONE
researchProduct